
JOURNAL OF COMPUTATIONAL PHYSICS 123, 111–118 (1996)
ARTICLE NO. 0009

Parallel Implementations of 2D Explicit Euler Solvers*

L. GIRAUD†

CERFACS, 42 Av. Coriolis, 31057 Toulouse, France

AND

G. MANZINI‡

CRS4, via N. Sauro 10, 09123 Cagliari, Italy

Received July 14, 1994; revised August 1995

network of workstations using the packages PVM [2] and
P4 [3].In this work we present a subdomain partitioning strategy applied

to an explicit high-resolution Euler solver. We describe the design The subdomain partitioning strategy adopted in this
of a portable parallel multi-domain code suitable for parallel envi- work is a special case of the more general multiblock tech-
ronments. We present several implementations on a representative nique where the grid is divided into several blocks linked
range of MIMD computers that include shared memory multiproces-

by appropriate internal boundary conditions. In the fieldsors, distributed virtual shared memory computers, as well as net-
of computational fluid dynamics (CFD) applications theworks of workstations. Computational results are given to illustrate
advantages of such an approach are multiple: it providesthe efficiency, the scalability, and the limitations of the different

approaches. We discuss also the effect of the communication proto- a way to adapt a structured grid to complicated geometries
col on the optimal domain partitioning strategy for the distributed yielding better results in terms of convergence rates and
memory computers. Q 1996 Academic Press, Inc. numerical accuracy, and, finally, it helps to reduce the

amount of data needed to be ‘‘in-core’’ for the processor,
allowing a better fitting of the code on the memory of

1. INTRODUCTION
the machine.

Moreover, the possibility of performing calculations in-The domain decomposition method is now a fairly well-
side any block in a nearly independent way introduce aestablished technique for the parallel solution of PDEs
natural parallelism that can be directly exploited on distrib-problems. In this work we consider an explicit solver for
uted memory machines [4, 18].the bidimensional Euler equations and its parallelization

The set of compressible Euler equations in the absenceon different multiprocessor architectures by a subdomain-
of diffusive phenomena and thermal exchanges can bepartitioning strategy. Our main goal is to study the impact
written in the integral formulation asof this strategy for an efficient implementation of the same

code on several different architectures. All our parallel
implementations only differ within the low level routines, E

V

U
t

dV 1 R
V

(F, G) ? n ds 5 0, (1)that manage the multidomain environment on the different
machines and depend on the programming tools available.
In order to develop an efficient parallel version, several
different approaches both for the implementations and for where V is an arbitrary domain of integration defined by
the subdomain partitioning have been investigated. We a closed curve V, and n is the outward normal vector to
present some implementations on a BBN TC2000, a dis- this curve. The conservative variables and the fluxes are
tributed virtual shared memory computer, on an Alliant given by:
FX/80, a shared memory multiprocessor, as well as on a

* This work has been carried out with the financial support of
CERFACS and partially with the financial contribution of the Sardinia U 51

r

ru

rv

rE
2 , F(U) 51

ru

ru2 1 p

ruv

ruH
2 ,

Regional Authorities.
† email : giraud@cerfacs.fr, mail.
‡ email : manzini@crs4.it, mail.

111
0021-9991/96 $12.00

Copyright 1996 by Academic Press, Inc.
All rights of reproduction in any form reserved.

112 GIRAUD AND MANZINI

2. AN UNSTEADY COMPRESSIBLE TEST CASE:
THE DOUBLE MACH REFLECTION

To show the ability of the code to capture shocks andG(U 51
rv

ruv

rv2 1 p

rvH
2 .

contact discontinuities in two-dimensional compressible
flows we consider the double Mach reflection with Mach
number 3.72 of a shock wave on a 408 ramp. A detailed
description of the parameters of the calculation and of theIn the above formulae, r is the density, ru and rv are
physical phenomena can be found in [13, 7]. In Fig. 1 wethe two components of the momentum, rE is the energy,
report the results of a numerical simulation on a 200 3p is the pressure, and H is the dynamic enthalpy. This last
100 grid using the second-order ENO scheme on the con-variable is related to the other quantities by H 5 E 1 p/r.
servative variables in space, the exact iterative RiemannThe system of Eqs. (1) is discretized using a structured
solver, and the second-order TVD Runge–Kutta schemecell-centered finite volume approach, where the cell-aver-
by Shu [17] in time. The first 10 time steps of this calculationaged approximation U of the conserved variables U is
using 64-bit double precision have been taken to evaluatelogically associated to each cell and advanced in time via
the performance of the different parallel implementationsa flux balance estimation,
reported in Section 4.

The sequential performance of the implementeddUij

dt
1

1
uV iju

O4
k51

(Fk , Gk) ? nk Dsk 5 0, schemes are displayed in Table I. The times displayed in
this table show that the second-order ENO scheme used
in conjunction with the exact Riemann solver is poorlywhere uViju is the measure of the area of the generic quadri-
vectorizable. On the Convex, which is a vector computer,lateral cell V ij and the index k 5 1, 4 refers to the four
the speedup produced by the vectorization is 1.94, due toedges defining it.
the implemented reconstruction technique and the exactA great number of numerical schemes have been devel-
Riemann solver which are essentially scalar (first row inoped in this framework in recent years for the simulation
Table I). However, this technique is highly accurate forof compressible gas dynamics and are available in the liter-
CFD computations and efficient parallel implementationsature. They differ essentially in the way they address the
can be considered.very difficult problem concerning the formation of the flow

discontinuities like shocks and contact discontinuities. This
difficulty is of primary importance because the overall ac- 3. PARALLEL IMPLEMENTATIONS BASED ON
curacy of these calculations is very closely related to the DOMAIN DECOMPOSITION
accuracy with which flow discontinuities are represented
[11]. The explicit numerical schemes considered in Section 1

have a natural parallelism. From the point of view of aIn this work, the Eqs. (1) are discretized using a conser-
vative shock-capturing high-order accurate Godunov-type parallel implementation, we consider an implementation

more suitable for distributed memory computers based onscheme [8]. High-order accuracy is achieved by using a
TVD-MUSCL or an ENO polynomial reconstruction both a decomposition of the physical domain into subdomains

assigned to different processors. That is an alternative toon conservative and characteristic variables. These polyno-
mials are built by a special interpolation of the discrete a more standard but also more strongly machine dependent

loop-level tuning of the code convenient for shared mem-set of cell-averaged data satisfying an a priori condition to
ensure nonlinear stability, such as a total variation dimin- ory computers.

Euler equations have a hyperbolic nature, which impliesishing (TVD) or an essentially nonoscillatory (ENO) con-
straint [14]. The interpolation technique provides high- a finite velocity of propagation for all the linear and nonlin-

ear waves forming the solution. That is, the value at a timeorder accurate results in the regions of smoothness of the
solution and avoids unwanted growth of spurious numeri- at each point depends on the values at the previous time at

some points lying in their neighbourhood, which is definedcal oscillations near flow discontinuities (Gibbs phenom-
ena) by imposing monotonicity or by limiting them up to from a mathematical point of view by the domain of depen-

dence [14]. It follows that the update of the flow variablesthe truncation error level [12].
Finally, fluxes estimation can be computed by three dif- of a cell in the mesh requires the knowledge of the flow

variables in a local region around the cell in consideration.ferent Riemann solvers: the approximate one by Roe [16],
the iterative one by Gottlieb and Groth [9], and the HLLE This is immediately clear when the MUSCL or the ENO

reconstruction/interpolation methods are implemented,approximate one developed by Einfeldt [5]. The time-step-
ping is given by an explicit second- or third-order TVD because they require a wide stencil of neighbouring cells.

If a partitioning into subdomains is introduced, the updateRunge–Kutta scheme.

2D EXPLICIT EULER SOLVERS 113

FIG. 1. Double Mach reflection with Mach number 3.72: domain of integration and computed solution.

of each subdomain requires the knowledge of the values The first and the last steps are implemented in a very
different way depending on the parallel programming para-of the flow variables inside a larger region, which is in fact

the union of the domain of dependence of any cell inside digm available on the different target multiprocessors: a
simple copy from local to global data structures on sharedthat subdomain. For any cell close to an internal boundary,

shared by two adjacent subdomains, a portion of this stencil and distributed virtual shared memory systems; some send/
receive calls from some message passing routines for dis-falls outside the subdomain in a neighbouring one and

requires interprocessor communication. The size of the tributed memory implementations. Furthermore, in order
to have a complete set of Riemann problems for each cellregions of any subdomain needed by the neighbouring

processors is a function of the order of the reconstruction close to the interfaces of the subdomains, each processor
needs the outer interface state computed in the reconstruc-and are referred to as the overlapping data areas.

The multidomain environment developed for any of our tion phase. To minimize the communication among the
processors and optimize the ratio of local to remote dataparallel implementations works in the following way:
accesses, we choose to compute redundantly on each sub-

• each processor takes the values on the overlapping domain one reconstruction for each cell adjacent to the
data areas in the neighbouring domains which it needs for subdomain boundary. This choice was essentially moti-
its update; vated by the fact that the cost of this redundant computa-

• each processor performs a complete update of its do- tion, in terms of number of operations, is not excessive and
main, which means it computes the reconstruction, it solves it avoids one more synchronization or message exchange
all the Riemann problems, and it does one time step for during the updating step.
each cell; In the progress of developing a distributed version based

on the domain decomposition technique introduced in Sec-• each processor makes available to its neighbours the
updated values in the overlapping areas. tion 3 a parallel loop-level version for the shared memory

TABLE I

CPU Time (es) of the Different Numerical Schemes per Cell per Timestep on a 200 3 100 Grid

IBM RS6000 Convex C220 Convex C220
Numerical scheme model 550 without vectorization with vectorization

Second-order ENO (Cons) 1 exact Riemann solver 534.85 1315.90 677.55
Second-order ENO (Char) 1 exact Riemann solver 713.45 1890.70 945.55
Third-order MUSCL (Cons) 1 exact Riemann solver 527.45 1075.20 476.70
Second-order ENO (Cons) 1 Roe’s approximate Riemann solver 432.00 1456.60 501.45
Second-order ENO (Char) 1 Roe’s approximate Riemann solver 609.25 2028.10 761.35
Third-order MUSCL (Cons) 1 Roe’s approximate Riemann solver 417.09 1226.10 302.20

114 GIRAUD AND MANZINI

TABLE II In Table II, it can be seen that the speedup on the Alliant
becomes worse than on the BBN when eight processorsSpeedup of the Shared Memory Implementation on a
are used. This behaviour can be explained by a higher200 3 100 Grid
cache memory contention that can occur during all the

No. of domains computation when the eight processors of the Alliant are
involved. On the BBN, the memory contention can onlyComputer 1 2 4 8 16 20
occur during the copies at the beginning and at the end of
each time step on a subdomain, since all the computationsAlliant FX/80 348.07 1.79 3.31 5.61 — —

BBN TC2000 429.00 1.71 3.27 6.21 10.38 11.36 are performed on local data. However, when the number
of processors increases, the memory contention effect also
appears (combined with a decrease of the granularity of
the parallel tasks), although the shared arrays are declaredcomputers has been written on the BBN TC2000. This
interleaved; in this case, the arrays are distributed over allmultiprocessor is a MIMD distributed virtual shared mem-
the nodes of the machine by pieces whose size is the lengthory computer that exhibits features of both shared and
of the cache lines (16 bytes, or 4 single or 2 double precisiondistributed memory architectures. The nodes communicate
words). Nevertheless, on the BBN the asymptotic speedupthrough a high performance switch (the butterfly switch).
of this implementation seems to be reached on 20 nodesIt provides a transparent access by each processor to all
for a 200 3 100 grid.locations in memory, whether local to a processor or re-

The limitation of the shared memory implementationmote on another processor. Within the parallel loop, the
on the BBN is clearly due to the amount of data movement.update on a subdomain is handled by the first free proces-
One way to reduce this data movement is to attach onesor, which reads from a shared data structure A into local
subdomain per processor that keeps the data in the localarray data structure the values of the unknowns at the
memory of the node. This approach corresponds to a usualtime step n for any subdomain and its overlapping area,
domain decomposition implementation on a distributedcomputes locally the updated values, and stores back the
computer, where each processor performs the update onpartial results at time step (n 1 1) in a shared data structure
one subdomain. The data locality combined with a coarseB. When all the domains have been updated, B is copied
grain parallelism gives rise to natural and efficient imple-into A. The implementation of the data movements be-
mentations on this class of architecture. Different imple-tween local and shared arrays was motivated by the works
mentations have been considered depending on the toolsdescribed in [1, 6], where this approach was the most effi-
available on the target computer: the BBN TC2000 and acient on this computer according to its memory hierarchy.
network of IBM RS/6000s connected by Ethernet. On theFurthermore, the portability of this shared memory ver-
BBN, in order to implement the communication using thesion is achieved by the use of a loop-level parallelism avail-
virtual shared memory, each processor only writes in someable on a wide range of MIMD shared memory multipro-
shared arrays the updated values it computed on the over-cessors. Thus, experiments have been performed on a 26-
lapping data areas, synchronizes, and reads from the sharednode BBN TC2000 and also on an 8-processor Alliant FX/
arrays the values computed by its neighbours on the over-80 that is a vector multiprocessor machine with a shared
lap subregions. For this implementation the communica-memory accessed through a shared cache memory. The
tion is done through the virtual shared memory and theperformance shown in Table II corresponds to the first 10
synchronizations are implemented using locks. Further-time steps of the simulation described in Fig. 1. The number
more, in order to limit the shared memory contention, thein the second column represents the elapsed time T1 for
shared data structures are declared interleaved. In the resta stand alone execution of the single domain code, i.e., the
of this paper, this version is referred to as ‘‘BBN Fortran,’’most efficient sequential version of the program. In this
because it has been implemented using only the BBN For-version, the computations are done only on local data,
tran extensions.without any copy. In the remaining columns, the number

The implementations using P4 and PVM, both on theof domains (equal to the number of processors involved
BBN and on the network of workstations, are based on ain the computation) is varied. For a fixed number of p
master-slave scheme. The master is in charge of all theprocessors only the performance for the best decomposi-
initializations; it broadcasts the overall information andtion into p subdomains is given. For the parallel experi-
receives at the end of the simulation the results of thements we display the speedup SUp that is defined by
computation. This process does not perform any other
computation, it is only an I/O interface between the slavesSUp 5 T1/Tp ,
processes and the user. The slave processes receive all the
characteristics of the simulations from the master and thenwhere Tp is the elapsed time for a stand alone execution

on p processors. start to iterate. At the end of each time step, they exchange

2D EXPLICIT EULER SOLVERS 115

TABLE III slower on 100 nodes than on 80 nodes; this observation is
no longer true on a 400 3 200 grid.Speedup of the Distributed Implementations on a

We conclude our evaluation of this code on the BBN200 3 100 Grid
by considering the performance using larger problems. In

No. of domains particular, we wish to determine the scaled speedup that
one can expect using this highly parallel solver on parallelComputer 1 2 4 8 16 20 80
machines. The scaled speedup is defined as

BBN Fortran 429.00 1.98 3.91 7.61 13.70 16.14 54.86
P4 BBN 429.00 1.99 3.83 7.67 13.98 16.76 — S*p 5 pT*1 /T*p ,
P4 RS/6000 140.54 1.92 3.73 7.11 — — —
PVM RS/6000 140.54 1.83 3.39 5.54 — — —

where T*p is the time required to complete 10 time steps
on a problem with p 3 n discretization points using p
processors; see [10]. The scaled speedups observed on the

the updated values on the overlap subregions. For this Lawrence Livermore 128-node BBN TC2000 are displayed
implementation, the send/receive primitives express both in Fig. 2 for n 5 64 3 64. The best observed speedup is
the communication and the synchronization. close to 80 when 100 processors are in use. This behaviour

illustrates the scalability of this parallel code. That is, if
4. EXPERIMENTAL RESULTS the number of grid points is increased linearly with the

number of processors, the computational time is still almost
The performance shown in Table III corresponds to the constant (the curve of the scaled speedup is almost linear).

first 10 time steps of the simulation described in Fig. 1. This feature also illustrates the interest of such parallel
We can verify that the distributed approach on the BBN codes that allow addressing bigger problems on a bigger
is much more efficient than the shared one. On the 200 configuration of a computer, without increasing signifi-
3 100 grid the speedup observed on the BBN using the cantly the global elapsed time required to perform one
distributed implementation is 16.14, while it is only 11.36 timestep. However the stability constraint that link both
for the shared approach on 20 nodes. It can also be ob- space and time discretization steps for the explicit schemes
served, that on the network of workstations the perfor- has some consequences on the performance of the parallel
mance of the PVM implementation is always worse than scaled code for a complete simulation:
the P4 one. The inefficiencies were found to be mainly

1. If the mesh space is kept unchanged, the time stepcaused by both the PVM architecture and the Aix op-
that ensures the stability of the scheme does not change.erating system, which is not very efficient performing con-
The scalability allows us to perform the simulation on atext switches and semaphores handling, as mentioned in
bigger physical domain without increasing significantly the[15]. With P4 the messages are directly sent from the sender

to the recipient, while in PVM they are sent from the
sender to a local daemon, from the local daemon to the
remote one, and finally are received by the recipient. This
more complicated path is the cause of both context switches
(from daemon to user’s process) and semaphore handling
for the communication between these processes. This over-
head is particularly penalyzing for small meshes; on a 100
3 50 grid the speedup is only 2.44 with PVM and 4.82 with
P4 on eight workstations. These results also illustrate the
coarse-grain parallelism required on a network of work-
stations. On the BBN, since the CPU is slower and the
communication network faster, the performance in terms
of speedup is better. On the previously mentioned mesh
size on eight BBN nodes the speedup is 7.05. Further,
these experiments illustrate the portability of the codes
developed using such packages, as the results displayed in
this table correspond to the same code performed on the
different platforms. The curves depicted in Fig. 2 show
the effect of the granularity of the parallel tasks on the
performance. In particular, it can be seen that for the FIG. 2. Speedups on a 128-node BBN TC2000: s, 200 3 100 mesh;

*, 400 3 200 mesh; 1, scaled speedup (64 3 64).smallest test case, a 200 3 100 mesh, the parallel code is

116 GIRAUD AND MANZINI

FIG. 4. Example of four box-decomposition.

mesh: box-partitioning (e.g., see Fig. 4), and slice-parti-
tioning (e.g., see Fig. 5). It can be observed that for a fixed

FIG. 3. Scaled speedups for the complete simulation. number of subdomains, box-partitioning minimizes the
amount of communicated data while slice-partitioning min-
imizes the number of messages exchanged between the
processors. These features are illustrated in Figs. 4 and 5computational time for a complete experimentation. In
with an example of decomposition into four subdomains.that case the speedups of the scaled code is the one dis-
In this example an n 3 n mesh computation requires 8played in Fig. 2.
messages of length n/2 per time step if a box-decomposition

2. If the mesh is refined, according to the number of is applied and 6 messages of length n if a slice-decomposi-
processors on the same physical domain, the timestep has tion is considered.
also to be reduced in accord with a CFL constraint, in On the BBN, where data are exchanged through inter-
order to ensure the stability of the schemes, leaved double precision arrays, the communication

through the virtual shared memory is similar to packets
switching communication, where packet size is 16 bytesDt # Dallowed 5 S 1

Dtx
1

1
Dty
D21

,
(a cache line length). The communication time can be
modeled by

where the two inviscid signal ‘‘frequencies’’ 1/Dtx and
1/Dty can be roughly estimated as

TPacket 5
NBytes

16
3 (16 3 Bandwidth21 1 Latency).

1
Dtx

p
uuu 1 c

Dtx
,

1
Dty

p
uvu 1 c

Dty
.

For such an interconnection network, the communication
time will be minimum when the amount of the exchanged

If the mesh is refined linearly in one direction, the timestep
has also to be linearly refined. Then the number of time-
steps to perform a complete experimentation increases
linearly with this respect (i.e., as the squared root of the
number of processors for uniform box decompositions).
In this latter case, the theoretical speedup to perform a
complete simulation on n2 processors is bounded by n
(and would be bounded by n2 on n3 processors for 3D
calculations with the same assumptions on the relation
between time and space steps). From our experiments the
speedups for a complete simulation are displayed in Fig. 3.

4.1. Partitioning Strategies

For all our experiments, two different strategies have
FIG. 5. Example of four slice-decomposition.been explored for decomposing in subdomains the global

2D EXPLICIT EULER SOLVERS 117

TABLE IV methods generally require enough computation to provide
us with a good ratio between communication and computa-Averaged Communication Time (ms) per Time Step for the
tion. This feature can be directly exploited for efficientDistributed Implementation on a 200 3 100 Grid
implementations on networks of workstations. In this case,

Partition we observed a speedup greater than 7 on 8 workstations
with very low traffic on the local area network. Of course,Computer 4 3 1 2 3 2 1 3 4 20 3 1 5 3 4 1 3 20
an increase in traffic would have a negative impact on the
performance due to a bad balance between communicationBBN Fortran 137 96 188 810 416 1108
and computation time because of Ethernet contention.

Furthermore, our experiments show that even if the
decomposition has no impact on the convergence of the
explicit scheme, it has an impact on the elapsed computa-data will be minimum. In Table IV we display the time
tional time. According to simple models of communication,spent in communication on the BBN, i.e., the time corre-
the observed results show that on distributed multiproces-sponding to writing and reading the shared arrays. It can
sors with packet switching communication, the box-decom-be seen that for a fixed number of domains the box-decom-
positions give the best performance, while on systems withposition effectively provides us with the less expensive
circuit switching communication and high latency the slice-communication.
decompositions are the most efficient. Thus, on the BBNInstead, on a network of workstations using modest
the box-decompositions provide us with the best perfor-length messages, the communication through Ethernet is
mance of the parallel code, and slice-decompositions aresimilar to a circuit-switching model and the communication
the most efficient on the network of workstations.time can be modeled by

Last, the parallelizations of the Euler solver, first on
shared memory multiprocessors, then on a virtual sharedTCircuit 5 Latency 1 NBytes 3 Bandwidth21.
memory computer, and finally on distributed memory
multiprocessors using message-passing, shows that thereFor modest length messages when the latency time is high,
is a possibility of progressively moving a code from sharedcompared to the bandwidth, the minimum will be achieved
memory towards distributed memory programming para-by minimizing the number of messages, i.e., the number
digms using an intermediate step that is the virtual sharedof accesses to the network, which also reduces the probabil-
memory programming paradigm. The parallel versions ofity of collision on Ethernet.
our code is easily portable on most of the MIMD multi-These simple models explain the different behaviour of
processors and heterogeneous networks of computers cur-the code when the two different partitioning strategies are
rently available, as well as on the MPP, as the Cray T3D,adopted. Especially on the BBN, box-partitioning yields
due to application of standard public domain message-better performance by minimizing the amount of ex-
passing packages like P4 and PVM.changed data, while slice-partitioning yields better perfor-

mance on a network of workstations connected via
ACKNOWLEDGMENTSEthernet, by minimizing the number of exchanged mes-

sages, due to the high latency time to access Ethernet
We thank the Lawrence Livermore National Lab for having providedcompared to its bandwidth and to the decrease of the

us with an access to the 128-node BBN TC2000. It allowed us to complete
probability of collision. our experiments and evaluate the scalability of the developed code.

5. CONCLUDING REMARKS REFERENCES

This experience shows that for some applications of CFD 1. P. R. Amestoy, M. J. Daydé, I. S. Duff, and P. Morère, Int. J. High
based on explicit time-advancing schemes, a domain de- Speed Comput., 7, 21–44 (1995).
composition approach can result in a very good strategy 2. A. Beguelin, J. Dongarra, A. Geist, R. Manchek, and V. Sunderam,

Tech. Rep. ORNL/TM-11826, Oak Ridge National Laboratory, Ten-to efficiently parallelize a code.
nessee 37831, 1992 (unpublished).On the BBN, the parallelism provided by the explicit

3. R. Butler and E. Lusk, User’s Guide to the P4 Parallel Programmingscheme is efficiently exploited since the observed speedups
System (Mathematics and Computer Science Division, Argonne Na-are around 65 on 100 nodes for a medium size (400 3 200)
tional Laboratory, 1992).

mesh, since in this case each processor only works on a 40
4. F. Dellagiacoma, S. Paoletti, F. Poggi, and M. Vitaletti, ‘‘Multidomain

3 20 subgrid. The speedup is close to 80 for the 640 3 Computations of Compressible Flows in a Parallel Scheduling Envi-
640 mesh used in the scaled speedup experiments. This ronment, 1992,’’ in Parallel CFD’92 Conference (unpublished).
performance illustrates the scalability of the resulting im- 5. B. Einfeldt, C. D. Muntz, P. L. Roe, and B. Sjogreen, J. Comput.

Phys. 92, 273 (1991).plementation. TVD and ENO high-order shock-capturing

118 GIRAUD AND MANZINI

6. L. Giraud, Int. J. High Speed Comput., 7, 161–190 (1995). 13. P. A. Jacobs, ICASE Interim Report 18 (unpublished).

14. R. J. LeVeque, Numerical Methods for Conservation Laws, Birk-7. L. Giraud and G. Manzini, Tech. Rep. TR/CFD-PA/93/49,
CERFACS, Toulouse, France, 1993 (unpublished). hauser, Basel, 1990.

8. S. K. Godunov, Mat. Sb. 47, 271 (1959). 15. G. Richelli, Tech. Rep., ECSEC, Italy, 1992 (unpublished).
9. J. J. Gottlieb and C. P. T. Groth, J. Comput. Phys. 78, 437 (1988). 16. P. L. Roe, J. Comput. Phys. 43, 357 (1981).

10. J. Gustafson, G. Montry, and R. Benner, SIAM J. Sci. Stat. Comput. 17. C. W. Shu, ICASE Report 90-55 (unpublished).
9, 609 (1988). 18. Y. Yadlin and D. A. Caughey, ‘‘Block Implicit Multigrid Solution of

11. A. Harten, ICASE Report 91-8 (unpublished). the Euler on a Parallel Computer,’’ in Parallel Computational Fluid
Dynamics: Implementation and Results, edited by H. Simon (MIT12. A. Harten, S. Osher, B. Engquist, and S. R. Chakravarthy, Appl.

Numer. Math. 2, 347 (1986). Press, Cambridge, MA, 1992), 127.

